
Abstract 

We describe the Tactical Battle Manager (TBM), an 
intelligent agent that uses several integrated 
artificial intelligence techniques to control an 
autonomous unmanned aerial vehicle in simulated 
beyond-visual-range (BVR) air combat scenarios. 
The TBM incorporates goal reasoning, automated 
planning, opponent behavior recognition, state 
prediction, and discrepancy detection to operate in a 
real-time, dynamic, uncertain, and adversarial 
environment. We describe evidence from our 
empirical study that the TBM significantly 
outperforms an expert-scripted agent in BVR 
scenarios. We also report the results of an ablation 
study which indicates that all components of our 
agent architecture are needed to maximize mission 
performance. 

1 Introduction 

Beyond-visual-range (BVR) air combat is a modern form of 
air-to-air fighting where aircraft engage each other over large 
distances, often hundreds of kilometers. Compared to the 
close-range dogfighting that was common during World 
Wars I and II, BVR combat tends to be less reactive and 
involve more long-term planning and strategy. In this paper 
we describe an agent, called the Tactical Battle Manager 
(TBM), designed to control an unmanned aerial vehicle 
(UAV) in a BVR combat scenario using numerous integrated 
AI techniques. 
 BVR air combat has several key properties that make it an 
interesting domain to study and necessitates an integrated 
design rather than any single AI technique. Engagements 
involve multiple aircraft, both teammates and adversaries, 
operating in a contested airspace. The environment is 
continuous, partially observable (i.e., due to limited sensor 
ranges), and noisy (i.e., due to sensor errors). Additionally, 
aircraft need to meet tight real-time constraints to evade 
opponent attacks and avoid dangerous maneuvers (e.g., 
flying too low, colliding with teammates). 
 Our integrated architecture uses several parallel 
components that can each access, create, and modify 
information in shared data sources. This parallel design 
allows the components to process information in real time 

and avoids delays caused by slower components. The TBM 
uses goal reasoning [Aha et al., 2013; Roberts et al., 2016] 
to dynamically reason about its goals and modify them in 
response to unexpected events or opportunities (e.g., an 
opponent attack, an opponent separated from their squadron). 
Automated planning is used to generate plans based on the 
TBM’s goals. Since the plans of opponent aircraft are initially 
unknown and may change over time, the TBM continuously 
monitors the actions of opponent aircraft and performs 
behavior recognition to predict their current plans and 
targets. The TBM uses its own plans, as well as the behaviors 
of friendly and opponent aircraft, to perform state prediction 
(i.e., anticipate how the environment is likely to change). 
However, because the TBM may be using incomplete sensory 
information, have erroneous sensor values, or have incorrect 
assumptions about opponent behavior, it continuously 
performs discrepancy detection to determine if there are any 
flaws with its predictions, assumptions, or opponent models. 
 The remainder of this paper describes our agent 
architecture and provides justification for the inclusion of 
each of the integrated components. In Section 2 we describe 
the BVR air combat domain and formalize the problem being 
addressed. Section 3 describes our integrated agent design 
and the role of each component. We empirically evaluate the 
TBM’s design in Section 4, and discuss related work in 
Section 5. Finally, we discuss aspects of our work in Section 
6, and summarize our contributions and mention areas for 
future work in Section 7. 

2 Beyond-Visual-Range Air Combat 

BVR air combat involves two opposing teams of aircraft 
located at large distances from each other (i.e., hundreds of 
kilometers) and operating in large airspaces (i.e., thousands 
of square kilometers). The objective of each team is to 
destroy the opponent aircraft or force them to retreat. Aircraft 
do not use short-range weapons, as is the case in dogfighting-
style air combat, but instead use active radar homing missiles 
with ranges of approximately 50 kilometers. 
 We use the Advanced Framework for Simulation, 
Integration and Modeling (AFSIM) system [Clive et al., 
2015], a high-fidelity air combat simulator that allows aircraft 
to be controlled either programmatically or using physical 
hardware (e.g., flight sticks, cockpit consoles). AFSIM 
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allows for the inclusion of a variety of aircraft models, 
including existing real-world aircraft and custom aircraft. We 
use models based on the F-16 fighter jet. AFSIM allows for 
low-level control of an aircraft but also provides higher-level 
abstractions (e.g., maintaining altitude, moving towards a 
target, waypoint-based navigation). 
 The TBM is responsible for controlling a single aircraft in 
a BVR combat mission. At the start of a mission, the TBM 
and each of its teammates receives a mission briefing. This 
briefing contains information about the team, which is 
assumed to be correct, and the opponents, which may be 
incorrect. Information about the team includes: team leader, 
capabilities (i.e., each teammate’s aircraft type, each 
teammates missile capabilities), tactics (i.e., initial mission 
goals, preferred altitudes for engaging and evading enemies, 
preferred angles of approach and firing angles), speed (i.e., 
passive speed, approach speed, engagement speed, cornering 
speed, escape speed), and weapons (i.e., distances at which 
missiles are expected to hit and miss, distance from an 
opponent that is considered dangerous, when to take 
defensive shots). This briefing’s information about the 
opponents contains the number of opponent aircraft, their 
aircraft type, and weapons capabilities. 
 At discrete time intervals, each aircraft 𝑖 receives as 
sensory input a set 𝑠𝑖

𝑡 containing the 𝑛𝑖  objects 𝑜1, … , 𝑜𝑛𝑖
 that 

are currently visible to it at time 𝑡 (𝑠𝑖
𝑡 =  {𝑜1, 𝑜2, … , 𝑜𝑛𝑖

}). 
These objects include positional information (i.e., latitude, 
longitude, altitude, heading, velocity) about teammate and 
opponent aircraft, as well as teammate and opponent missiles. 
Since each aircraft has partial observability, 𝑛𝑖 can vary 
among time intervals and there is no guarantee that the same 
objects will always be visible (i.e., objects can move into and 
out of an aircraft’s field of vision).  However, aircraft on the 
same team can communicate and share sensory information. 
If 𝒮𝑡𝑒𝑎𝑚

𝑡  is the set of all sensory inputs received by an 
aircraft’s team at the current time 𝑡, then each of that team’s 
aircraft will have access to a team-level sensory input 𝑠𝑡𝑒𝑎𝑚

𝑡  
that contains all visible objects: 

𝑠𝑡𝑒𝑎𝑚
𝑡 = ⋃ 𝑠𝑖

𝑡

𝑠𝑖
𝑡∈𝒮𝑡𝑒𝑎𝑚

𝑡

  

 The aircraft can perform several high-level parameterized 
actions, including flying in a specified formation (i.e., 
maintaining a speed and direction relative to other 
teammates), free flying (i.e., flying in a straight line in a 
specified direction at a fixed altitude), flying relative to a 
target (i.e., towards, away from, to its left, to its right), and 
firing a missile at a specified target. The role of the TBM is 
to use the mission briefing and sensory information to 
perform actions that intelligently control the aircraft. 

3 System Design 

In this section we describe the integrated design of the TBM 
(Figure 1). It uses several integrated components and shared 
resources that allow the components to interact and provide 
on-demand services. Reasoning components are shown in 
orange, discrepancy detectors in yellow, and shared resources 

in gray. The arrows denote the flow of information between 
the various components. For example, the Goal Manager 
modifies the goals stored in the Goals shared resource, which 
can be accessed and used by the Planner. 
 

Figure 1: The conceptual diagram of the Tactical Battle Manager 

(TBM) composed of shared resources (gray), reasoning components 

(orange), and discrepancy detectors (yellow). Arrows show the 

movement of information between the various components. 

3.1 Shared Resources 

The TBM has five data sources that can be accessed and 
modified by any of its components (although in practice only 
a subset will actually access each data source): Goals, Plans, 
Discrepancies, Expectations, and Object Models. These 
shared data sources serve as the central communication 
mechanism through which the components share 
information. No single component is responsible for 
modifying all five data sources, so it is only through their 
integration that sufficient data is available for the system to 
intelligently reason on and act. 
 

 Goals: The Goals data source contains the TBM’s 

currently selected goals. Although the TBM can have 

multiple simultaneous goals, our current 

implementation restricts the agent to a single active 

goal. The representation of goals differs slightly from 

traditional representations (i.e., a set of grounded 

literals), and is instead composed of m higher-level 

desires. Each desire has an associated function 𝜆𝑚 that 

maps the current sensory input (i.e., 𝑠𝑡𝑒𝑎𝑚
𝑡 ) to a value 

between 0 and 1 (𝜆𝑚: 𝑆 → [0,1], where 𝑆 is the set of 

all sensory inputs), with higher values better satisfying 

the desire. Each sensory input is represented by a tuple 

𝑑𝑒𝑠 of desire values 𝑑1, … , 𝑑𝑚 (𝑑𝑒𝑠 = 〈𝑑1, … , 𝑑𝑚〉). A 

goal  𝑔 is represented by a tuple of preferred desire 

values 𝑝𝑟𝑒𝑓1, … , 𝑝𝑟𝑒𝑓𝑚 (𝑔 = 〈𝑝𝑟𝑒𝑓1, … , 𝑝𝑟𝑒𝑓𝑚〉), 
meaning that the TBM will attempt to achieve 

environment states that match those desire values (i.e., 

where 𝑑𝑒𝑠 and 𝑔 are similar). Examples of desires 

include maintaining the TBM’s safety, maintaining a 

teammate’s safety, disrupting opponent movements, 



avoiding contact with additional opponents, and 

aggressively targeting opponents. 

 Plans: The Plans data source contains the grounded 

plan the TBM is currently executing. A plan 𝜋 contains 

a sequence of actions 𝑎1, … , 𝑎𝑙 to achieve the current 

goal 𝑔 (𝜋 = 〈𝑎1, … , 𝑎𝑙〉). 

 Expectations: These are stored at two levels of 

granularity: object-level and desire-level. Object-level 

expectations contain the expected environment state at 

discrete time intervals (i.e., projections of what 𝑠𝑡𝑒𝑎𝑚
𝑡  

will be at various points in time t). If expectations are 

available for 𝑘 time points in the future, the object-level 

expectations 𝐸𝑜𝑙  is a list of 𝑘 state expectations (𝐸𝑜𝑙 =
〈𝑠𝑡𝑒𝑎𝑚

𝑡+1 , 𝑠𝑡𝑒𝑎𝑚
𝑡+2 , … , 𝑠𝑡𝑒𝑎𝑚

𝑡+𝑘 〉).  The desire-level 

expectations 𝐸𝑑𝑙  are a higher-level representation that 

encodes how well each future state is predicted to 

satisfy each of the 𝑚 desires (𝐸𝑑𝑙 =
〈𝑑𝑒𝑠𝑡+1, 𝑑𝑒𝑠𝑡+2, … , 𝑑𝑒𝑠𝑡+𝑘〉). By using two levels of 

expectations, the TBM can examine whether the 

current sensory input meets expectations at a high level 

(e.g., the TBM has the expected level of safety) or at a 

low level (e.g., an opponent aircraft is at its expected 

position). 

 Object Models: These contain detailed information 

about each observed object in the environment (i.e., 

aircraft and missiles). If at time 𝑡 there have been 𝑛 

unique objects observed in the environment (i.e., in the 

current and all previous team-level sensory inputs), the 

set 𝒪ℳ contains an object model 𝑂𝑖  for each of the 𝑛 

objects (𝒪ℳ =  {𝑂1, 𝑂2, … , 𝑂𝑛}). Each object model 

contains the object type 𝑡𝑦 (i.e., friendly aircraft, 

hostile aircraft, friendly missile, hostile missile), its 

plan 𝜋, its target 𝑡𝑎𝑟, and the set 𝑂𝐵𝑆 of all 

observations of the object (𝑂 = 〈𝑡𝑦, 𝜋, 𝑡𝑎𝑟, 𝑂𝐵𝑆〉). For 

this paper we assume all missiles have the same plan 

and it does not change (i.e., it flies towards its target).  

 Discrepancies: These represent unexpected events or 

environment states that are encountered by the agent. 

Any discrepancies that are identified by the 

discrepancy detectors are stored. Each discrepancy 𝑑 

contains the type 𝑡𝑦 (e.g., the detector that identified 

the discrepancy), its priority 𝑝 (i.e., how significant it 

is), the object 𝑂 that caused the discrepancy, the 

object’s expected value 𝑣𝑒𝑥𝑝, and its observed value 

𝑣𝑜𝑏𝑠 (𝑑 = 〈𝑡𝑦, 𝑝, 𝑂, 𝑣𝑒𝑥𝑝 , 𝑣𝑜𝑏𝑠〉). Discrepancies 

involving multiple objects are represented as multiple 

discrepancies, one for each object. 

3.2 Goal Manager 

The Goal Manager is responsible for selecting new goals for 
the TBM (i.e., modifying Goals). A goal change can be 
externally or internally controlled. An externally controlled 

goal change occurs when the TBM receives a command from 
a superior (i.e., a human teammate or lead aircraft). In this 
situation, the TBM immediately switches to the new goal. An 
internally controlled goal change is the result of the TBM’s 
own decision making process. An internally controlled goal 
change may be the result of the TBM determining it has 
successfully completed its current goal, predicting it will fail 
to achieve it current goal (e.g., because of unanticipated 
actions by other entities), or recognizing an opportunistic 
situation (e.g., an exposed opponent). Goal failure is 
predicted by periodically reevaluating the current plan to 
determine if continuing to perform the plan will no longer 
achieve the TBM’s goals (i.e., due to the dynamic and 
adversarial environment). Similarly, opportunistic situations 
are a result of the current plan resulting in unanticipated states 
that are potentially beneficial to the TBM (e.g., an 
Opportunistic Target discrepancy as described in Section 
3.6). Being able to dynamically modify its goals gives the 
TBM the ability to respond to unanticipated events without 
relying on plans that cover all contingency situations. 
 The Goal Manager continuously monitors the 
Discrepancies data source and uses a set of rules to determine 
if the discrepancy warrants a goal change. For example, 
consider a situation where a Model Changed discrepancy 
(discussed in Section 3.6) was created because the hostile 
aircraft 𝑂′ changed its plan (i.e., as determined by the 
Behavior Recognizer described in Section 3.3). The 
following are examples of rules the Goal Manager uses to 
handle Model Changed discrepancies: 
 
Rule 1: 

  IF: (𝑂′ was not attacking 𝑇𝐵𝑀) and (𝑇𝐵𝑀 was not 
attacking 𝑂′) and (𝑂′ is now attacking 𝑇𝐵𝑀) and 
(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑂′, 𝑇𝐵𝑀)  <  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) 

  THEN: Change goal 
Rule 2: 

  IF: (𝑂′ was not attacking 𝑇𝐵𝑀) and (𝑇𝐵𝑀 was not 
attacking 𝑂′) and (𝑂′ is now attacking 𝑇𝐵𝑀) and 
(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑂′, 𝑇𝐵𝑀) >  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) 

  THEN: Ignore discrepancy 
 
The two rules, while nearly identical, differ in how close the 
hostile aircraft is to the TBM. In Rule 1, since the hostile is 
now attacking the TBM and is close, the Goal Manager will 
change the TBM’s goal in response to the immediate threat. 
In Rule 2, the hostile is now attacking the TBM but is a 
sufficient distance away (e.g., significantly outside the 
hostile’s attack range) so the Goal Manager will ignore the 
discrepancy. The implemented version of the Goal Manager 
uses a collection of rules that are provided by domain experts. 

The way in which the Goal Manager selects a new goal is 
based on goal priorities that are defined as part of an initial 
mission briefing. For example, the mission briefing may 
indicate that goals that target a specific high-value opponent 
are of higher priority than other goals. In this situation, the 
Goal Manager will select a new goal that targets the high-
value opponent unless there are circumstances that prevent it 



from doing that (e.g., the high-value target is out of radar 
range), in which case it will select a lower-priority goal.   

3.3 Behavior Recognizer 

The Behavior Recognizer examines the history of 
observations of each entity (i.e., stored in the Object Models), 
and updates their recognized plans and targets if any changes 
are detected. Our approach uses an entity’s angle relative to 
each potential opponent aircraft to determine its target. For 
each potential target, the standard deviation of the angle is 
calculated, and the opponent with the lowest standard 
deviation over time is classified as the target. The intuition 
for this classification approach is that the entity will likely 
keep its target within its field of vision (i.e., if it is attacking) 
or at its rear (i.e., if it is evading), whereas the position of 
non-targets will not influence where it moves (i.e., there will 
be more variance in the angle relative to those aircraft). 
 The Behavior Recognizer performs simplified rule-based 
plan recognition. Each aircraft is labelled as either Attacking 
or Evading. The rules use the object’s angle relative to its 
target, speed, and altitude to classify its plan. The following 
are examples of two rules used by our system: 
 
Rule 1: 

  IF: (angle is FACING) and (speed is FAST) and 
(altitude is HIGH) 

  THEN: Attacking 
Rule 2:  

  IF: (angle is FACING AWAY) and (speed is FAST) 
and (altitude is LOW) 

  THEN: Evading 
 
The first rule encodes that aircraft that are facing their target, 
moving at high speeds, and at a high altitude tend to be 
performing attacking behaviors. Similarly, aircraft that are 
facing away from their target, moving at high speeds, and at 
low altitudes tend to be evading. For each of these 
classifications, the entity is assumed to be executing a simple 
plan to achieve the desired behavior. For an Attacking entity, 
the plan involves flying towards and firing missiles at its 
target, whereas for an Evading entity the plan involves flying 
away from any opponents and missiles. The rules are 
provided by domain experts. 

3.4 Predictor 

The Predictor uses the TBM’s current plan (i.e., stored in 
Plans) and the recognized plans of the other entities (i.e., 
stored in the Object Models) to generate predictions of the 
future environment states (i.e., to revise Expectations). The 
TBM uses a lower-fidelity internal simulator to predict the 
environment changes that occur if each entity continues 
performing its current plan. More specifically, it uses a 
lightweight version of AFSIM that uses less sophisticated 
flight models (i.e., object movement is determined using 
simple functions rather than full physics models), full 
observability, and less frequent sensory updates (i.e., sensor 
values are provided once per second rather than ten times per 

second), allowing complete simulations to be run quickly 
(i.e., a fraction of a second).  
 Before the Predictor runs a new simulation, the previous 
expectations are cleared (i.e., 𝐸𝑜𝑙 = 〈 〉, 𝐸𝑑𝑙 = 〈 〉). This is 
done because the Predictor should have more information 
than when the previous simulation was performed (i.e., 
updated positions and plans), so new expectations are 
assumed to be more accurate than previous ones.  At fixed 
time intervals during the simulation (i.e., 𝑡 + 1, 𝑡 + 2, … , 𝑡 +
𝑘), the current environment state is sampled and stored in the 
expectations (i.e., 𝑠𝑡𝑒𝑎𝑚

𝑡+1 , 𝑠𝑡𝑒𝑎𝑚
𝑡+2 , … , 𝑠𝑡𝑒𝑎𝑚

𝑡+𝑘 ). We use a sampling 
rate of once per second. These expectations are coarse, due to 
the low-fidelity simulation, but provide a general trajectory 
of future environment states, allowing the TBM to identify if 
any entities deviate from their current plans or if new objects 
become visible (e.g., new opponents or missiles). Similarly, 
although the environment is highly dynamic, longer-term 
expectations are less important because the TBM will update 
its expectations frequently. 

3.5 Planner 

The Planner uses the TBM’s current goal (i.e., stored in 
Goals) and the recognized plans of other entities (i.e., stored 
in the Object Models) to generate a plan for the TBM to 
execute (i.e., replace the plan stored in Plans). The Planner is 
implemented as a plan library planner [Borrajo et al., 2015]; 
it uses a library of ungrounded plan templates (i.e., each plan 
is represented as a sequence of actions but the actions do not 
have their parameters specified). For example, consider the 
simple plan template:  

1. Free fly at a specified heading 
2. Fly directly at a target 
3. Fire at the target 

This specifies that the TBM should free fly, fly, and fire, but 
leaves the heading and target ungrounded. The templates in 
the plan library are provided by BVR domain experts and 
represent desirable air combat tactics. 
 During planning, the Planner generates multiple 
instantiations of any applicable plans (i.e., grounds the 
actions). The instantiations as exhaustive, but are constrained 
by any restrictions defined in the mission briefing (e.g., 
maximum attack speed, attack angle) or resource availability 
(e.g., number of remaining missiles). To evaluate each 
candidate plan, their outcome is predicted using the 
lightweight simulator (i.e., the simulator used by the 
Predictor). A single simulation is run for each candidate plan. 
The outcome of each candidate plan’s simulation (i.e., 
represented in terms of how well a plan achieves each desire) 
is compared to the TBM’s goal, and the plan that best 
achieves the TBM’s goal is selected. Achievement of the 
TBM’s goal is measured as the similarity between the TBM’s 
goal and the state reached by performing the plan (i.e., the 
similarity between the desire values). 

3.6 Discrepancy Detectors 

The discrepancy detectors identify unexpected events or 
environment states encountered by the agent. There are seven 
discrepancy detectors in the TBM [Karneeb et al., 2016]: 



Incoming Missile, Model Changed, Flanking Hostile, 
Expectations Violated, Out of Ammo, Low on Fuel, and 
Opportunistic Target. 
 The Incoming Missile detector identifies unexpected 
hostile missiles. When an unexpected hostile missile appears 
(e.g., the TBM was not expecting the opponent to fire it), a 
discrepancy is created. This allows the TBM to dynamically 
respond to an attack and attempt to evade the missile. The 
Model Changed discrepancy detector creates a discrepancy 
whenever a hostile aircraft changes its plan or target. In 
response, the TBM may need to change its own tactics (i.e., 
goals or plans) or update its expectations. 
 The Flanking Hostile detector detects when hostile aircraft 
deviate from their expected position such that they approach 
the range at which they can attack the TBM’s UAV. An 
aircraft that approaches attack range becomes a direct threat 
to this UAV, so creating a discrepancy allows the TBM to 
respond to the threat and modify the UAV’s behavior 
accordingly. The Expectations Violated detector examines 
how closely the Expectations deviate from the actual 
environment states. While the previous three types of 
detectors look for individual discrepancies (e.g., a single 
missile or aircraft), this one identifies when the entire 
environment is deviating too far from expectations. Given the 
long-term plans and dynamic nature of BVR air combat, such 
deviations are to be expected, but using this approach allows 
the TBM to identify when new goals or updated plans may 
be necessary. The Out of Ammo and Low on Fuel 
discrepancy detectors are used to identify when the TBM’s 
resources are running low (i.e., it should return to base or a 
resupply station). 

Finally, the Opportunistic Target detector identifies when 
opponent aircraft that the TBM is not currently targeting 
become favorable to engage (e.g., can be flanked or attacked 
from behind). This allows the TBM to quickly respond to 
opportunistic targets and capitalize on an opponent’s tactical 
errors. 

4 Evaluation 

Our empirical evaluation assesses the TBM’s ability to 
operate effectively in a BVR air combat domain. Our 
experiments concern the following hypotheses: 

H1: The TBM will outperform a baseline scripted agent 
in BVR scenarios 

H2: Each component of the TBM contributes positively 
to overall mission performance  

4.1 Experimental Conditions 

The evaluation scenarios involve two teams of aircraft with 
four aircraft per team. A prototypical scenario was created 
where each team is aligned in a column with aircraft spaced 
10 nautical miles from each other and opposing teams spaced 
45 nautical miles from each other. The prototypical scenario 
was used to create 100 different random scenarios where each 
aircraft’s position is modified by between -4 and 4 nautical 
miles (according to a uniform random distribution) in both 
the North/South and East/West directions. Figure 2 shows a 

graphical representation of one such random scenario. All 
evaluations use the same random scenarios. Since the initial 
positions may provide an advantage to one team, each 
random scenario is run twice with the teams switching 
positions between runs. This results in 200 total runs per 
evaluation. A run ends when one team is completely 
destroyed or 20 minutes elapse. 
 We used eight different teams of aircraft. One is controlled 
by the TBM, one is controlled by a scripted agent, and the 
remaining six are ablations of the TBM that have one 
component replaced with a simplified (but still functional) 
version. The teams are: 

 𝑻𝑩𝑴𝒇𝒖𝒍𝒍: Aircraft are controlled by TBMs using the 

full agent architecture described in this paper. 

 𝑹𝑰𝑷𝑹: Aircraft are controlled by scripted agents that 

are implemented using the Reactive Integrated 

Planning aRchitecture (RIPR) [Clive et al., 2015]. 

RIPR agents were designed with the assistance of 

subject-matter experts (i.e., ex-pilots) and are modelled 

using behavior trees. The agents perform competent 

BVR combat behavior across all aspects of an 

encounter (e.g., target pursuit, attacking, escaping 

danger). 

 𝑻𝑩𝑴𝑮𝑴: Offensive goals use less-sophisticated target 

selection that considers only the nearest opponent. 

 𝑻𝑩𝑴𝒑𝒍𝒂𝒏: The instantiated plans are restricted to 

consider only direct motion routes (i.e., flying directly 

to a target rather than a path that flanks it). 

 𝑻𝑩𝑴𝒑𝒓𝒆𝒅: Desire-level expectations are generated 

randomly according to a uniform random distribution. 

 𝑻𝑩𝑴𝑩𝑹: Performs behavior recognition for only the 

first 15 seconds of the mission (i.e., does not perform 

additional recognition afterward).  

 𝑻𝑩𝑴𝑫𝑫: All detectors are turned off except the 

Incoming Missile detector. 

 𝑻𝑩𝑴𝒏𝒐𝒏𝒆: The simplified versions of all five 

components are used.  

Each agent is given an initial goal to destroy all opponent 
aircraft while minimizing team casualties. We measure how 
well that goal is achieved using the following metrics:  

 Kills: The number of opponent aircraft destroyed 

 Wins: The number of scenarios that end due to all 

opponents being destroyed 

4.2 Results 

Each experiment involves the 𝑇𝐵𝑀𝑓𝑢𝑙𝑙  team competing 
against one of the other seven teams. The results, shown in 
Table 1, measure the number of kills and wins for both the 
𝑇𝐵𝑀𝑓𝑢𝑙𝑙 team (labeled as 𝑇𝐵𝑀𝑓𝑢𝑙𝑙) and their opponents 
(labeled as Opponent). Also, the percent increase in the 
performance of the 𝑇𝐵𝑀𝑓𝑢𝑙𝑙  team versus the opponent team 
is displayed (labeled as Increase), with positive values 
indicating 𝑇𝐵𝑀𝑓𝑢𝑙𝑙 outperformed its opponent. For Wins, the 



values do not sum up to 200 because some scenarios ended 
in draws (i.e., the time limit was reached with aircraft on both 
teams remaining). In all experiments, using the full integrated 
TBM architecture resulted in statistically significant 
improvements to BVR air combat performance (using a 
single-tailed t-test with 𝑝 < 0.01).  
 

Figure 2: Graphical representation of the starting conditions in a 

constrained random 4 vs 4 scenario (aircraft size not to scale) 

 
Table 1: Results of 200 scenarios comparing a team of four 𝑇𝐵𝑀𝑓𝑢𝑙𝑙  

agents to a team of four opponents  

Opponent 

Kills Wins 
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𝑅𝐼𝑃𝑅 756 224 237.5% 165 5 3200.0% 

𝑇𝐵𝑀𝐺𝑀 700 549 27.5% 118 54 118.5% 

𝑇𝐵𝑀𝑝𝑙𝑎𝑛 663 580 14.3% 106 67 58.2% 

𝑇𝐵𝑀𝑝𝑟𝑒𝑑 697 577 20.8% 112 50 124.0% 

𝑇𝐵𝑀𝐵𝑅 679 571 18.9% 99 63 57.1% 

𝑇𝐵𝑀𝐷𝐷 722 566 27.6% 124 53 134.0% 

𝑇𝐵𝑀𝑛𝑜𝑛𝑒  718 545 31.7% 127 50 154.0% 

4.3 Discussion 

Although 𝑇𝐵𝑀𝑓𝑢𝑙𝑙  had sizable victories over all other teams, 
the most significant improvement was 𝑇𝐵𝑀𝑓𝑢𝑙𝑙  over 𝑅𝐼𝑃𝑅, 
with our goal reasoning agent beating the scripted agent the 
vast majority of the time. This provides strong evidence in 
support of H1. We conjecture that the highly dynamic and 
uncertain nature of the BVR environment made it difficult for 
a scripted agent to react to the full range of discrepancies and 
unexpected events. Although RIPR performed competent 
BVR behavior (i.e., could intelligently perform the full range 
of BVR combat behavior) and was designed by domain 
experts, it was infeasible for its behavior tree to cover all 
unexpected events in all situations. The TBM did not suffer a 
similar limitation because it can dynamically modify its goals 
or replan in response to unexpected events. 

The full TBM agent architecture outperformed each of the 
ablations that used component simplifications. This provides 
support for H2 and demonstrates that our integrated 
architecture relies on each of the TBM’s reasoning 
components to achieve full performance. Our motivation for 
using simplified components rather than removing the 
components entirely was to ensure that the resulting agents 
could still perform full BVR behavior without being 
excessively handicapped. We conducted an additional test 
that compared the performance of the TBM that uses all five 
simplified components (𝑇𝐵𝑀𝑛𝑜𝑛𝑒) versus the scripted agent. 
Although 𝑇𝐵𝑀𝑛𝑜𝑛𝑒  is not as competent as 𝑇𝐵𝑀𝑓𝑢𝑙𝑙, it still 
significantly outperformed the scripted agent (133 wins, 23 
losses, an increase of 478.3%). This provides further support 
for H1 by demonstrating that the TBM, even with simplified 
versions of each component, outperformed a competent 
scripted agent that was authored by domain experts.  

5 Related Work 

To the best of our knowledge, there have been relatively few 
applications of AI agents in high-fidelity BVR scenarios, 
with the exception of the RIPR agent we discussed in our 
evaluation [Clive et al., 2015]. In low-fidelity simulators (i.e., 
simple 2D environments without sophisticated flight and 
aircraft models), genetic algorithms have been used to 
optimally assign targets to each aircraft [Luo et al., 2005] and 
select initial team formations [Mulgund et al., 1998]. These 
approaches represent a subset of the complete agent behavior 
performed by the TBM. Also, they are performed only before 
the start of a scenario; they do not respond to changes in the 
environment or unexpected opponent behavior. 
 Our previous work in the BVR domain has primarily 
focused on individual reasoning components in isolation and 
has not evaluated the effectiveness of the integrated agent 
architecture. This includes measuring the effectiveness of 
various Behavior Recognition algorithms [Alford et al., 
2015; Borck et al., 2015] and a smaller set of discrepancy 
detectors [Karneeb et al., 2016]. In this paper we instead 
presented the complete TBM architecture, empirically 
evaluated the influence of each reasoning component, and for 
the first time directly compared it to an expert-authored BVR 
agent.  

Goal Reasoning has been successfully used to control 
agents in several autonomous systems domains. Wilson et al. 
[2016] control an autonomous underwater vehicle as it 
performs a surveying task. The agent monitors for 
unexpected surface vehicles and modifies its goals depending 
on whether the vehicle is hostile. Their work differs from ours 
in that their agent uses only a single discrepancy detector (i.e., 
unexpected surface vehicle), performs a simpler form of 
behavior recognition (i.e., labeling a vehicle as hostile or not), 
and does not actively engage opponents (i.e., it stops 
surveying until the adversary leaves). GRIM [Johnson et al., 
2016] allocates unmanned aerial vehicles to search specific 
regions during disaster relief scenarios. GRIM responds to 
events including changing resource levels, adding or 
removing vehicles, unexpected environment factors, and 
changing mission priorities. This differs from the TBM in 



that GRIM is focused on collaborative team goals rather than 
the real-time control of individual vehicles. This is possible 
in GRIM because each vehicle performs a predefined search 
pattern once assigned and does not need to respond to attacks 
from hostile enemies. 

The Autonomous Squad Member (ASM) [Gillespie et al., 
2015] is another example of an integrated goal reasoning 
agent. The ASM agent controls a simulated unmanned 
ground vehicle and operates as a member of a human-robot 
squad. Based on observation of the environment, the agent 
hypothesizes about the actions of other actors and the 
occurrence of external events, recognizes the goals and plans 
of its teammates, and modifies its own goals in response. The 
primary difference between the ASM and the TBM is that the 
ASM agent does not perform the full behavior of a human 
teammate (i.e., it could not replace a human member of the 
team). Instead, it performs a limited set of behaviors meant to 
support human teammates. 

While some of the previously described agents operate in 
the presence of hostile agents in the environment, none 
directly engage with them. In the real-time strategy game 
StarCraft, Goal Reasoning has been used to control an agent 
that attempts to defeat an opponent in a military-style battle 
[Weber et al., 2012]. This is similar to the TBM in that it 
requires recognizing the opponent’s intent and responding to 
unexpected opponent actions. However, the primary 
differences are that their system contends with only a single 
opponent in each scenario (although the opponent controls 
many individual units, as does the Goal Reasoning agent 
GDA-C [Jaidee et al., 2013]), whereas the TBM engages a 
team of opponent agents, and their discrepancy detector looks 
only for changes in the number of visible objects the 
opponent controls (e.g., buildings and units), whereas the 
TBM uses a richer set of discrepancy detectors.  

Dynamically changing an agent’s goals and performing 
real-time replanning in response to a changing environment 
has been studied in a robotic search and rescue domain 
[Talamadupula et al., 2011]. This differs from our work in 
that the agent does not detect unexpected events or select its 
own goals (i.e., this information is provided by the robot’s 
operator). MADbot [Coddington et al., 2005] uses a set of 
internal motivators to evaluate goals and trigger goal 
changes. Unlike the TBM, MADbot’s goal changes are in 
response to internal factors and do not take into account 
external events or the actions of other agents. 

6 Discussion 

Our integrated agent was designed for high performance in a 
specific application domain, beyond-visual-range air combat, 
so it uses a considerable amount of domain-specific 
information. This is especially true of the rule-based 
components that rely heavily on rules provided by domain 
experts. Given the level of complexity of BVR combat and 
the well-established tactics used by pilots, it was necessary to 
use domain knowledge to ensure that the TBM achieved a 
high level of performance while behaving is such a way that 
a human teammate would consider its behavior reasonable 
and predictable. However, although our agent incorporates a 

significant amount of domain-specific information, we feel 
that the overall design could be used in other domains. Goal 
management, behavior recognition, planning, prediction, and 
discrepancy detection are all components that would be 
valuable to include in agents in other domains. Additionally, 
a number of the domain-specific aspects of our agent could 
be transferred into similar domains. For example, the 
Incoming Missile discrepancy detector could be modified to 
work in other domains where hostile agents fire projectiles or 
the Behavior Recognizer’s rules for target detection could be 
modified for other combat environments. 
 One of the primary lessons learned from the development 
of our agent was that using some state-of-the-art algorithms 
for the components resulted in decreased overall performance 
in our domain. While state-of-the-art algorithms often 
improved performance on a specific subtask, the 
improvements were often not significant enough to offset 
their increased computational costs. Instead, we found it was 
more beneficial to use simpler low-cost techniques. The 
overall performance of our system was a result of numerous 
integrated techniques working together, so allowing real-time 
execution of all components was more important than small 
component-level performance improvements. However, our 
approach uses a modular architecture so we can replace 
existing components with state-of-the-art algorithms if they 
meet real-time constraints or the UAV adds additional 
computational resources. 

7 Conclusions 

In this paper, we presented an integrated agent architecture, 
the Tactical Battle Manager, for controlling an unmanned 
aerial vehicle in simulated beyond-visual-range air combat 
scenarios. The primary novelty of the TBM is that it 
combines techniques from goal reasoning, automated 
planning, opponent behavior recognition, state prediction, 
and discrepancy detection. Our empirical evaluation 
demonstrated that the TBM significantly outperforms an 
expert-authored BVR agent in a set of combat scenarios. 
Additionally, our ablation study demonstrated that each 
individual reasoning component of the TBM positively 
influenced mission performance; maximum mission 
performance was only achieved when the fully integrated 
architecture was used. 
 One area of future work we plan to address is to integrate 
learning into the discrepancy detection process. For example, 
this could include allowing the TBM to learn models of 
opponent aircraft and missiles, and using those models to 
detect different hardware configurations (e.g., new types of 
aircraft or more advanced missiles). We also plan to add 
capabilities for the TBM to identify opportunistic targets and 
communicate with other UAVs to perform small-team tactics 
(e.g., surround the opponent, create a diversion). 
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